This manuscript table gives the probability that four jointly normally distributed random variables will be simultaneously positive (orthant probability) when the distribution has a mean of zero and a correlation matrix of the form

$$
\left[\begin{array}{cccc}
1 & A & 0 & 0 \\
A & 1 & B & 0 \\
0 & B & 1 & C \\
0 & 0 & C & 1
\end{array}\right]
$$

where A, B, and C are non-negative.
The values of this probability are tabulated to 6 D for $A=0(0.05) 0.95, B=$ $0(0.05) 0.95$, and $C=0(0.01) 0.99$, consistent with the correlation matrix being positive definite. The author claims accuracy of the tabular values to at least 5D, on the basis of a number of checks. She briefly discusses the question of interpolation, and presents a method for using this table to calculate the orthant probability in the general case.

J. W. W.

8[K].-Norman T. J. Bailey, The Elements of Stochastic Processes with Applications to the Natural Sciences, 'John Wiley \& Sons, Inc., New York, 1964, xi + 249 p., 23 cm . Price $\$ 7.95$.

This book is highly recommended reading, and is a good introductory text in applied stochastic processes for three reasons:
(1) It is clearly written, proceeding by examples; it is very readable and contains a number of exercises.
(2) It attempts to be broad, covering a number of areas, and has chapters on recurrent events, random walks, Markov chains and processes, birth-death processes, queues, epidemics, diffusion, and some non-Markovian processes.
(3) It does not belabor any one topic; it is, therefore, not too voluminous, and hence is challenging to the interested reader.

The author's experience in the field has produced a very fine contribution.

T. L. Saaty

United States Arms Control and Disarmament Agency
Washington 25, D. C.
9[K].-Statistical Engineering Laboratory, National Bureau of Standards, Table
of Percentage Points of the χ^{2}-Distribution, Washington, D. C., August 1950, $1+7 \mathrm{p}$. Deposited in UMT File.
This is a composite table made up from three previously published tables and by transformation or by interpolation in them.

The table uses the format of Thompson [2] and gives the percentage points of χ^{2} for the following values of ν and P :

ν	P and $1-P$
$1(1) 30$	$.005, .01, .02, .025, .05, .10, .20, .25, .30, .50$
$31(1) 100$	$.005, .01, .025, .05, .10, .25, .50$
$102(2) 200$	$.01, .10, .25, .50$
$2(2) 200$	$.000001, .0001$

